image of header

Reproducing GPT-2

2024/07/22

Attempt by Python[^1]

[^1]: Reference: https://github.com/karpathy/llm.c/blob/master/train_gpt2.py

Environment

from dataclasses import dataclass import math import torch import torch.nn as nn from torch.nn import functional as F @dataclass class GPTConfig: block_size: int = 1024 vocab_size: int = 50257 n_layer: int = 12 n_head: int = 12 n_embed: int = 768 class NewGELU(nn.Module): def forward(self, input): return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi) * (input + 0.044715 * torch.pow(input, 3.0))))

Blocks

class Block(nn.Module): def __init__(self, config: GPTConfig): super().__init__() self.ln_1 = nn.LayerNorm(config.n_embed) self.attn = CausalSelfAttention(config) self.ln_2 = nn.LayerNorm(config.n_embed) self.mlp = MLP(config) def forward(self, x): x = x + self.attn(self.ln_1(x)) x = x + self.mlp(self.ln_2(x)) return x

MLP

class MLP(nn.Module): def __init__(self, config: GPTConfig): super().__init__() self.c_fc = nn.Linear(config.n_embed, 4 * config.n_embed) self.gelu = NewGELU() self.c_proj = nn.Linear(4 * config.n_embed, config.n_embed) def forward(self, x): x = self.c_fc(x) x = self.gelu(x) x = self.c_proj(x) return x

Attention

class CausalSelfAttention(nn.Module): def __init__(self, config: GPTConfig): super().__init__() assert config.n_embed % config.n_head == 0 self.c_attn = nn.Linear(config.n_embed, 3 * config.n_embed) self.c_proj = nn.Linear(config.n_embed, config.n_embed) self.n_head = config.n_head self.n_embed = config.n_embed # it's actually a mask self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size)).view(1, 1, config.block_size, config.block_size)) def forward(self, x): B, T, C = x.size() # batch size, input length, embed dim qkv = self.c_attn(x) # projection to Q, K, V q, k, v = qkv.split(self.n_embed, dim=2) k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) attn = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1))) attn = attn.masked_fill(self.bias[:,:,:T,:T] == 0, float('-inf')) attn = F.softmax(attn, dim=-1) y = attn @ v y = y.transpose(1, 2).contiguous().view(B, T, C) y = self.c_proj(y) return y

Source

from dataclasses import dataclass import math import time import tiktoken import torch import torch.nn as nn from torch.nn import functional as F @dataclass class GPTConfig: block_size: int = 1024 vocab_size: int = 50257 n_layer: int = 12 n_head: int = 12 n_embed: int = 768 class MLP(nn.Module): def __init__(self, config: GPTConfig) -> None: super().__init__() self.c_fc = nn.Linear(config.n_embed, 4 * config.n_embed) self.gelu = nn.GELU(approximate='tanh') self.c_proj = nn.Linear(4 * config.n_embed, config.n_embed) self.NANOGPT_SCALE_INIT = 1.0 def forward(self, x): x = self.c_fc(x) x = self.gelu(x) x = self.c_proj(x) return x class CausalSelfAttention(nn.Module): def __init__(self, config: GPTConfig) -> None: super().__init__() assert config.n_embed % config.n_head == 0 self.c_attn = nn.Linear(config.n_embed, 3 * config.n_embed) self.c_proj = nn.Linear(config.n_embed, config.n_embed) self.n_head = config.n_head self.n_embed = config.n_embed self.register_buffer('bias', torch.tril(torch.ones(config.block_size, config.block_size)).view(1, 1, config.block_size, config.block_size)) def forward(self, x): B, T, C = x.size() qkv = self.c_attn(x) q, k, v = qkv.split(self.n_embed, dim=2) q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) att = (q @ k.transpose(-2, -1) * (1.0 / math.sqrt(k.size(-1)))) att = att.masked_fill(self.bias[:, :, :T, :T] == 0, float('-inf')) att = F.softmax(att, dim=-1) y = att @ v # y = F.scaled_dot_product_attention(q, k, v, is_caulsal=True) y = y.transpose(1, 2).contiguous().view(B, T, C) y = self.c_proj(y) return y class Block(nn.Module): def __init__(self, config: GPTConfig): super().__init__() self.ln_1 = nn.LayerNorm(config.n_embed) self.attn = CausalSelfAttention(config) self.ln_2 = nn.LayerNorm(config.n_embed) self.mlp = MLP(config) def forward(self, x): x = x + self.attn(self.ln_1(x)) x = x + self.mlp(self.ln_2(x)) return x class GPT(nn.Module): def __init__(self, config: GPTConfig): super().__init__() self.config = config self.transformer = nn.ModuleDict(dict( wte=nn.Embedding(config.vocab_size, config.n_embed), wpe=nn.Embedding(config.block_size, config.n_embed), h=nn.ModuleList([Block(config) for _ in range(config.n_layer)]), ln_f=nn.LayerNorm(config.n_embed) )) self.lm_head = nn.Linear(config.n_embed, config.vocab_size, bias=False) self.transformer.wte.weight = self.lm_head.weight self.apply(self._init_weights) def _init_weights(self, module): if isinstance(module, nn.Linear): std = 0.02 if hasattr(module, 'NANOGPT_SCALE_INIT'): std *= (2 * self.config.n_layer) ** -0.5 torch.nn.init.normal_(module.weight, mean=0.0, std=std) if module.bias is not None: torch.nn.init.zeros_(module.bias) elif isinstance(module, nn.Embedding): torch.nn.init.normal_(module.weight, mean=0.0, std=0.02) def forward(self, idx, targets=None): B, T = idx.size() assert T <= self.config.block_size pos = torch.arange(0, T, dtype=torch.long, device=idx.device) pos_emb = self.transformer.wpe(pos) tok_emb = self.transformer.wte(idx) x = tok_emb + pos_emb for block in self.transformer.h: x = block(x) x = self.transformer.ln_f(x) logits = self.lm_head(x) loss = None if targets is not None: loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1)) return logits, loss @classmethod def from_pretrained(cls, model_type): from transformers import GPT2LMHeadModel assert model_type in ['gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'] print(f"loading weights from pretrianed gpt: {model_type}") config_args = { 'gpt2': dict(n_layer=12, n_head=12, n_embed=768), 'gpt2-medium': dict(n_layer=24, n_head=16, n_embed=1024), 'gpt2-large': dict(n_layer=36, n_head=20, n_embed=1280), 'gpt2-xl': dict(n_layer=48, n_head=25, n_embed=1600), }[model_type] config_args['vocab_size'] = 50257 config_args['block_size'] = 1024 config = GPTConfig(**config_args) model = GPT(config) sd = model.state_dict() sd_keys = sd.keys() sd_keys = [k for k in sd_keys if not k.endswith('.attn.bias')] model_hf = GPT2LMHeadModel.from_pretrained(model_type) sd_hf = model_hf.state_dict() sd_keys_hf = sd_hf.keys() sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.maske_bias')] sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.bias')] transposed = ['attn.c_attn.weight', 'attn.c_proj.weight', 'mlp.c_fc.weight', 'mlp.c_proj.weight'] assert len(sd_keys_hf) == len(sd_keys) for k in sd_keys_hf: if any(k.endswith(w) for w in transposed): assert sd_hf[k].shape[::-1] == sd[k].shape with torch.no_grad(): sd[k].copy_(sd_hf[k].t()) else: assert sd_hf[k].shape == sd[k].shape with torch.no_grad(): sd[k].copy_(sd_hf[k]) return model class DataLoaderLite: def __init__(self, B, T): self.B = B self.T = T with open('input.txt') as f: text = f.read() enc = tiktoken.get_encoding('gpt2') tokens = enc.encode(text) self.tokens = torch.tensor(tokens) print(f'loaded {len(self.tokens)} tokens') print(f'1 epoch = {len(self.tokens) // (B * T)} batches') self.current_position = 0 def next_batch(self): B, T = self.B, self.T buf = self.tokens[self.current_position: self.current_position + B*T + 1] x = (buf[:-1]).view(B, T) y = (buf[1:]).view(B, T) self.current_position += B * T if self.current_position + (B * T + 1) > len(self.tokens): self.current_position = 0 return x, y num_return_sequences = 5 max_length = 30 device = 'cuda:6' torch.autograd.set_detect_anomaly(True) train_loader = DataLoaderLite(B=16, T=1024) torch.set_float32_matmul_precision('high') model = GPT(GPTConfig(vocab_size=50304)) model.to(device) # model = torch.compile(model) optimizer = torch.optim.AdamW(model.parameters(), lr=3e-4) for i in range(50): t0 = time.time() x, y = train_loader.next_batch() x, y = x.to(device), y.to(device) optimizer.zero_grad() with torch.autocast(device_type='cuda', dtype=torch.bfloat16): logits, loss = model(x, y) loss.backward() optimizer.step() torch.cuda.synchronize() t1 = time.time() dt = (t1 - t0) * 1000 tokens_per_sec = (train_loader.B * train_loader.T) / (t1 - t0) print(f"step: {i}, loss: {loss.item()}, dt: {dt:.2f}ms tok/sec: {tokens_per_sec}") exit(0) model.eval() torch.manual_seed(42) torch.cuda.manual_seed(42) while x.size(1) < max_length: with torch.no_grad(): logits = model(x) logits = logits[:, -1, :] probs = F.softmax(logits, dim=-1) topk_probs, topk_indices = torch.topk(probs, 50, dim=-1) ix = torch.multinomial(topk_probs, 1) xcol = torch.gather(topk_indices, -1, ix) x = torch.cat((x, xcol), dim=1) for i in range(num_return_sequences): tokens = x[i, :max_length].tolist() decoded = enc.decode(tokens) print(f">: {decoded}")

Copyright © 2025 All rights reserved.